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YZ sistemleri, insan uzmanlara yardımcı olarak tanı doğruluğunu artırabilir, zamandan tasarruf sağlar ve tekrarlayan
görevleri otomatikleştirerek sağlık çalışanlarının iş yükünü hafifletebilir. Bu nedenle klinik karar destek sistemlerinde
özellikle radyoloji, dermatoloji, kardiyoloji ve nöroloji gibi karmaşık veriye dayalı alanlarda tercih edilmektedir (Topol, 2019).

YZ sistemlerinin en belirgin avantajlarından biri, doğruluk ve hız açısından insan performansına yaklaşabilmeleri, hatta bazı
senaryolarda onu geçebilmeleridir. Özellikle görüntü işleme, doğal dil işleme, zaman serisi analizi ve tahmine dayalı
modelleme gibi alanlarda bu algoritmalar hem niceliksel hem de niteliksel olarak önemli başarılar elde etmiştir. Örneğin,
derin öğrenme modelleri kullanılarak geliştirilen sinir ağları, radyolojik görüntülerdeki anormallikleri %90’ın üzerinde
doğrulukla tespit edebilmektedir (Estava et al., 2017). Bu tür teknolojiler, doktorlara sadece ikinci bir görüş sunmakla
kalmaz, aynı zamanda klinik kararların tutarlılığını da artırır.

Yapay zekanın klinik uygulamalarda tercih edilmesinin bir diğer önemli nedeni, adaptif öğrenme yeteneğidir. Bir YZ modeli,
gerçek hasta verileriyle beslendikçe kendini geliştirir, böylece zamanla daha iyi tahminlerde bulunabilir. Ayrıca,
algoritmaların geri besleme mekanizmaları sayesinde sürekli olarak optimize edilmesi, tıpta “deneyimle uzmanlaşma”
sürecini dijital ortamda yeniden üretebilmektedir. Bu, özellikle nadir hastalıkların tespiti gibi uzmanlık gerektiren alanlarda
büyük önem taşımaktadır. 

2. YAPAY ZEKANIN SAĞLIK SEKTÖRÜNDEKİ KULLANIM ALANLARI
2.1. Tıbbi Görüntüleme ve Tanı Sistemleri
YZ, özellikle manyetik rezonans görüntüleme (magnetic resonance imaging-MRI), bilgisayarlı tomografi (BT), röntgen ve
ultrason gibi görüntüleme tekniklerinden elde edilen verilerin analizinde büyük bir rol oynamaktadır. Görüntülerdeki
anormalliklerin, örneğin tümörler, kanamalar veya organ hasarları tespitinde YZ sistemleri, radyologlara destek olmakta
veya bazı durumlarda onlardan daha yüksek doğrulukla sonuç verebilmektedir (Litjens vd., 2017).

Bu alanda yaygın olarak kullanılan konvolüsyonel sinir ağları (convolutional neural networks-CNN), görüntü işleme üzerine
optimize edilmiş derin öğrenme mimarileridir. CNN’ler, katmanlar halinde yapılandırılmış filtreler aracılığıyla, bir görüntüdeki
kenar, köşe ve daha karmaşık yapıları öğrenerek sınıflandırma yapar. Özellikle ‘convolutional’, ‘pooling’ ve ‘fully connected’
katmanları sayesinde görsel verilerdeki anlamlı desenleri tanıyabilirler (LeCun vd., 2015). 

CNN’lerin ilk katmanı olan convolutional layer, görüntü üzerindeki yere bölgeleri işleyen filtreler ile çalışır. Bu filtreler,
genellikle kenar, doku gibi düşük seviyeli özellikleri algılar. Her filtre, veri kümesi üzerinden öğrenilen ve modelin
kendiliğinden optimize ettiği parametrelerden oluşur. Aktivasyon fonksiyonları karmaşık görüntüleri öğrenme yetisi sağlar.
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1. GİRİŞ 
Sağlık sektörü hem bireylerin yaşam kalitesini doğrudan etkileyen hem
de sürekli artan veri miktarı ve karmaşıklığı nedeniyle yeni çözümlere
ihtiyaç duyan bir alandır. Bu noktada, yapay zekâ (YZ) teknolojileri
yalnızca bir yenilik değil, aynı zamanda sağlık hizmetlerinin yeniden
tanımlanmasında kilit bir rol üstlenmektedir. YZ, devasa sağlık verilerini
işleyebilme, örüntü tanıma yetenekleri ve öğrenme kapasitesi sayesinde;
hastalıkların erken teşhisi, tedavi planlarının kişiselleştirilmesi, klinik karar
destek sistemlerinin güçlendirilmesi ve idari süreçlerin otomasyonu gibi
birçok alanda çözüm sunmaktadır. YZ modelleri özellikle derin öğrenme
mimarileri ile bu karmaşıklığı yöneterek yüksek doğrulukta öngörüler
yapabilmektedir (Esteva et al., 2019).
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Rectified Linear Unit (ReLU), her katmandan sonra uygulanarak
modele doğrusal olmayanlık kazandırır. ReLU, negatif girdileri sıfıra
çekerken pozitif girdileri olduğu gibi bırakır ve bu sayede gradyanların
kaybolma sorununu azaltarak öğrenmeyi kolaylaştırır. Genel olarak
yapay sinir ağı, yalnızca doğrusal dönüşümlerden oluşursa yeterince
güçlü tahminler yapamaz, bu nedenle aktivasyon fonksiyonları büyük
önem taşır. Aşağıdaki denklemde, 𝑥 giriş değeridir ve ReLU
fonksiyonu, 𝑥 sıfırdan büyükse 𝑥’i olduğu gibi geçirir, küçükse sıfıra
eşitler. Yani negatif girdiler sıfırlanırken, pozitif girdiler değişmeden
aktarılır.

f(x) = max(0, x)
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ReLU, diğer fonksiyonlara kıyasla daha sade bir yapıya sahiptir ve

hesaplama açısından oldukça verimlidir. Bu özellikleri sayesinde derin

ağlarda  öğrenmeyi hızlandırır ve kaybolan gradyan (vanishing

gradient) problemini azaltır. ReLU sayesinde model, verideki karmaşık

desenleri daha etkili şekilde öğrenebilir. 
ReLU aktivasyon fonksiyonu, hesaplama
açısından basit ve hızlı olmasıyla öne çıkar. Derin
sinir ağlarında gradyanların sıfırlanma sorununu
büyük ölçüde azaltarak öğrenmeyi kolaylaştırır.
Pozitif değerler üzerinden çalıştığı için bilgi akışı
daha net sağlanır. Ancak negatif girdiler için
sonuç sıfır olduğundan bazı nöronlar tamamen
işlevsiz hale gelir; bu durum “dying ReLU”
problemi olarak bilinir.

Şekil 1’de yer alan ReLU fonksiyonun grafiği,
negatif girişlerde sıfır; pozitif girişlerde ise girişin
kendisini döndürür. Bu özelliği sayesinde, ağın
yalnızca anlamlı aktivasyonları öğrenmesini
sağlar. 

Pooling layer, elde edilen öznitelik haritalarının
boyutunu küçülterek hesaplama maliyetini azaltır
ve uzamsal genelleme sağlar. En yaygın kullanılan
yöntem “max pooling” olup filtre penceresindeki
maksimum değeri seçer. Son olarak fully
connected layer, tüm önceki katmanlardan gelen
bilgileri birleştirerek sınıflandırma veya regresyon
gibi karar işlemlerini gerçekleştirir.

CNN’ler geri yayılım (backpropagation) algoritması ile eğitilir. Bu algoritma, çıktıda yapılan hata ile her bir ağırlığın bu hataya

katkısını hesaplar ve zincir kuralını kullanarak ağırlıkları günceller. Böylece model zamanla daha doğru hale gelir. Ağ

boyunca geriye doğru yayılmasıyla ağırlıkların güncellenmesini sağlayan backpropagation algoritması şu temel adımlara

dayanır:

a. İleri yayılım: 
Verilen her girdi 𝑥 için, her katmandaki aktivasyon şu şekilde hesaplanır:

Girdi verisi katman katman ağdan geçirilir. Her katmanda, önce ağırlıklarla çarpılıp bias eklenerek bir değer elde edilir (z),

ardından bu değer aktivasyon fonksiyonundan geçirilerek çıkış (a) hesaplanır.

Şekil 1. ReLU fonksiyonu



Her katmandaki ağırlık ve bias değerleri, hesaplanan hataya göre küçük adımlarla güncellenir. Bu işlem öğrenme oranı
sayesinde kontrollü şekilde yapılır.

CNN mimarileri genellikle üç temel katmandan oluşur: evrişimsel katmanlar, havuzlama katmanları ve tam bağlı katmanlar.
Bu katmanların ardışık olarak düzenlenmesiyle derin ve güçlü bir öğrenme yapısı elde edilir. Aşağıda, gri seviyeli bir MRI
görüntüsünün CNN mimarisi ile nasıl işlendiği görülmektedir.
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b. Kayıp fonksiyonu:
Yaygın kullanılan kayıp fonksiyonu şu şekildedir:

Modelin tahmin ettiği sonuç ile gerçek sonuç arasındaki fark hesaplanır. Bu fark, ağın ne kadar hata yaptığını gösterir.

c. Geri yayılım:
Ağın çıktısı ile gerçek değer arasındaki farkı kullanarak gradyanlar hesaplanır.

d. Çıkış katmanı hatası:

Modelin çıktısı ile gerçek değer arasındaki fark, aktivasyon fonksiyonunun türevi ile çarpılarak son katmandaki hata oranı

elde edilir.

e. Gizli katman hataları:

Çıkıştaki hata, önceki katmanlara doğru yayılır. Bu yayılım sırasında

her katmandaki hata, bir sonraki katmandan gelen hata kullanılarak

hesaplanır.

f. Ağırlık ve bias güncellemesi:

Şekil 2. CNN mimarisi
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Şekil 2’de yer alan yapı sayesinde, görüntüdeki temel kenar ve doku gibi düşük seviyeli özelliklerden başlayarak, daha soyut

ve karmaşık desenlere kadar çeşitli bilgi düzeyleri çıkarılabilir. Özellikle tıbbi görüntülerde, CNN mimarileri bu çok katmanlı

yapı sayesinde anormalliklerin ve hastalıkla ilişkili kalıpların otomatik olarak öğrenilmesine olanak tanır. Böylece, MRI gibi

yüksek boyutlu ve detaylı görsel verilerden güvenilir tanı ve sınıflandırma sonuçları elde edilebilir.

CNN’ler, sağlık verilerindeki yüksek boyutlu ve karmaşık yapıları başarılı bir şekilde analiz edebilmeleri nedeniyle tercih

edilmektedir. Derin yapıları sayesinde manuel özellik mühendisliği gereksinimini ortadan kaldırmaları ve büyük veri

kümelerinde yüksek performans gösterlemeleri, tıbbi görüntü analizinden vazgeçilmez hale gelmelerini sağlamıştır.

2.2. Cerrahi Robotlar ve Otonom Sistemler
YZ destekli robotlar, cerrahların daha hassas ve minimal invaziv

operasyonlar yapmasına olanak tanımaktadır. Bu robotlar, geçmiş

operasyon verilerinden öğrenerek ameliyat sırasında karar

verebilir ve hata oranını azaltabilirler. Bu uygulamalarda

pekiştirmeli öğrenme (reinforcement learning-RL) önemli bir rol

oynar. RL, bir ajanın (bu bağlamda cerrahi robotun) bir ortamla

etkileşim kurarak ödül maksimizasyonu üzerinden karar verme

becerisi geliştirdiği bir öğrenme paradigmasıdır. Ajan, her eylem

sonrası ödül alır ve bu ödülü en üst düzeye çıkaracak stratejileri

zamanla öğrenir (Sutton & Barto, 2018). Şekil 3, pekiştirmeli   

öğrenmenin    temel     bileşenlerini    ve   bunların    birbiriyle   olan

etkileşimlerini göstermektedir.

Şekil 3’te, ajan (B), çevreden aldığı durumu (s) değerlendirerek bir eylem (a) üretmektedir. Bu eylemin sonucu olarak ortam

(T), bir ödül (r) ve yeni bir durum (s') üretir. Bilgi ve ödül, ajan tarafından öğrenme sürecinde değerlendirilir ve bu süreçte

ajan, politika (policy), değer fonksiyonu (value function) ve ödül yapısına (reward function) dayalı olarak kararlarını geliştirir.

Bu yapı, RL algoritmalarının karar verme sürecinin temelini oluşturarak, karmaşık ortamlarda etkili öğrenmenin kapısını

aralar (Kaelbling, 1996). RL, ajanların bir ortamda deneme-yanılma yoluyla öğrenmesini sağlayan bir yaklaşımdır. Ajan, bir

durum algılar ve buna uygun bir eylem gerçekleştirir. Bu eylemin sonucunda ödül (reward) alır ve yeni bir duruma geçer.

Politika, ajanın hangi durumda nasıl davranması gerektiğine karar veren stratejidir. Bu politika ya belirli kurala dayanabilir ya

da öğrenilerek geliştirilebilir. Bazı RL algoritmaları şunlardır:

Q-learning: Ajan, her durum-eylem çiftine karşılık gelen Q-değerini öğrenerek optimal politikayı bulmaya çalışır.

Deep Q-Networks (DQN): Q-learning’i derin sinir ağlarıyla birleştirir.

Policy Gradient Methods: Politika fonksiyonunun doğrudan optimizasyonunu sağlar (PPO, REINFORCE).

Bu süreçte, markov karar süreçleri (markov decision process-MDP) temel matematiksel çerçeveyi sağlar. RL’de kullanılan

yöntemler arasında Q-öğrenme (Q-learning), SARSA, ve Deep Q-Networks (DQN) gibi algoritmalar yer alır. Özellikle derin

pekiştirmeli öğrenme, karmaşık ortamlarda öğrenmeyi mümkün kılmış ve robotik, oyun, sağlık gibi birçok alanda uygulama

alanı bulmuştur. Bu yöntemler sayesinde RL, örneğin cerrahi robotların çevresel koşullara göre adaptif kararlar almasına

olanak tanır. Cerrahi robotik sistemlerde RL’nin tercih edilme nedeni, gerçek zamanlı adaptasyon yeteneğidir. Özellikle

sürekli değişen operasyon ortamlarında en uygun eylemleri öğrenebilmesi, insan müdahalesi olmadan operasyonlara

destek vermesini mümkün kılmaktadır.

2.3. Hastalık Tahmini ve Kişiselleştirilmiş Tedavi
YZ, hasta verilerinden (tıbbi geçmiş, yaşam tarzı, genetik bilgiler vb.) risk faktörlerini belirleyerek hastalıkların erken teşhisini

mümkün kılar. Aynı zamanda hastaya özel tedavi planları önererek kişiselleştirilmiş sağlık çözümleri sunar. Bu

uygulamalarda sıklıkla lojistik regresyon, destek vektör makineleri (support vector machine-SVM) ve yapay sinir ağları

(artificial neural network-ANN) kullanılır. LR, doğrusal karar sınırları üzerinden ikili sınıflandırma yapan bir istatiksel

modeldir. Özellikle modelin parametrelerinin yorumlanabilir olması ve eğitim sürecinin hızlı gerçekleşmesi, klinik ortamlarda

tercih edilmesini sağlar (Hosmer vd., 2013).

Şekil 3. Pekiştirmeli öğrenme



Lojistik regresyon, doğrusal bir model olup olasılık tahmini yapar. Giriş

değişkenlerine karşılık gelen ağırlıkları kullanarak bir karar sınırı

oluşturur. Çıktı, sigmoid aktivasyon fonksiyonu yardımıyla [0,1]

aralığında bir olasılık değeri olarak yorumlanır. Bu değer, örneğin bir

hastada kanser olma olasılığını ifade edebilir. Lojistik regresyonun

avantajı, modelin yorumlanabilirliğinin yüksek olmasıdır. Her bir

değişkenin çıktıya olan katkısı doğrudan gözlemlenebilir.

Regresyon modelleri, veriler arasındaki ilişkileri analiz etmek ve

tahminlerde bulunmak için yaygın olarak kullanılır. Lineer regresyon,

sürekli bağımlı değişkenleri tahmin etmekte etkili olsa da ikili

sınıflandırma gibi görevlerde yetersiz kalır. Bu gibi durumlarda,

doğrusal olmayan bir karar sınırı sağlayan lojistik regresyon devreye

girer. Şekilde 4'teki grafik, lineer regresyonun sınırlamalarını ve lojistik

regresyonun sınıflandırma problemlerinde nasıl daha etkili bir çözüm

sunduğunu göstermektedir.
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Şekil 4. Lojistik regresyon 

Grafikte görüldüğü gibi, lineer regresyon doğrusal

bir çizgi ile veriyi modellemeye çalışırken, bu

yaklaşım sınıflar arasında keskin bir ayrım

yapmada başarısız olabilir. Özellikle 0 ve 1 gibi sınıf

etiketleriyle çalışırken, tahmin değerlerinin bu

aralık dışına çıkması anlamlı değildir. Lojistik

regresyon ise sigmoid fonksiyonu sayesinde

tahminleri 0 ile 1 arasında sınırlar ve verileri olasılık

temelli olarak sınıflandırır. Bu nedenle, ikili

sınıflandırma problemlerinde lineer regresyona

kıyasla lojistik regresyon tercih edilir; çünkü daha

gerçekçi ve güvenilir sonuçlar sunar.

SVM, yüksek boyutlu verilerde bile etkili çalışan ve margin optimizasyonu prensibiyle en iyi sınıflandırma sınırını bulan bir

yöntemdir. Kernel trik sayesinde doğrusal olmayan verileri de doğrusal ayırabilme yeteneği vardır. Özellikle küçük veri

setlerinde aşırı öğrenmeye (overfitting) karşı dayanıklıdır (Cortes & Vapnik, 1995). 

SVM’ler, sınıflar arasında maksimum margini bulmaya çalışan bir algoritmadır. Bu margin, sınıflar arasındaki ayrımları

mümkün olduğunca açık hale getirir. Destek vektörleri, bu margin üzerinde veya çok yakınında bulunan veri noktalarıdır ve

karar sınırının belirlenmesinde kritik rol oynar. Veriler doğrusal olarak ayrılabilir değilse, Kernel trik sayesinde daha yüksek

boyutlu uzaylara taşınarak ayırt edilebilir hale getirilir. En yaygın kullanılan kernel fonksiyonları arasında radial basis

function (RBF) ve polinom yer alır. SVM’lerin regresyon problemlerine uyarlanabilir hale gelen versiyonu ise support vector

regression (SVR) olarak adlandırılır. 

ANN, insan beynindeki sinir ağlarından ilham alınarak geliştirilmiş bir makine öğrenme yapısıdır. Giriş katmanı, bir veya

birden fazla gizli katman ve bir çıktı katmanından oluşur. Girdiler, ağırlıklarla çarpılarak bir sonraki katmana aktarılır. Girdi

verilerinden soyut ve karmaşık örüntüler çıkarabilir, bu da onu klinik veri analizinde oldukça güçlü kılar. Derin öğrenme

yaklaşımlarıyla birleştiğinde ANN’ler büyük veri kümelerinde oldukça yüksek doğruluk sağlayabilir (Goodfellow vd., 2016). 

Şekil 5'te görselde yer alan üç katmanlı basit bir ileri beslemeli yapay sinir ağı (feedforward neural network-FNN), giriş

katmanı, gizli katman ve çıkış katmanından oluşur. Bu yapı, FNN, restricted boltzmann machines (RBMs) ve recurrent neural

networks (RNNs) gibi yaygın ANN mimarilerinin temelini oluşturur (O’Shea & Nash, 2015).
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Şekil 5. ANN mimarisi

Şekil 5’te yer alan bu üç katmanlı yapı, genellikle sinir ağlarının

temelini oluşturur ve özellikle derin öğrenme uygulamalarında önemli

bir rol oynar. Giriş katmanında alınan veriler, gizli katmanlar tarafından

işlenerek daha soyut temsil ve özellikler oluşturulur. 

Çıkış katmanı ise bu işlenmiş verileri son kararlar için kullanır. Bu yapı,

pek çok farklı yapay sinir ağı türü için temel oluşturur ve tıbbi görüntü

analizi, ses tanıma gibi geniş bir yelpazede uygulama alanına sahiptir

(O’Shea & Nash, 2015).

CNN’lerde olduğu gibi ANN’ler için de aktivasyon fonksiyonları bu katmanlar arasında kullanılarak modele doğrusal

olmayanlık kazandırır, ancak derin ağlarda ReLU gibi fonksiyonlar daha fazla tercih edilir çünkü daha derin ağlarda gradyan

problemlerini azaltır (Glorot vd., 2011). Aktivasyon fonksiyonları, modelin daha karmaşık karar sınırları oluşturmasını sağlar. 

İleri Yayılım sürecinde, veriler girişten çıktıya doğru akarken

aktivasyon fonksiyonları kullanılır. Ardından Geri Yayılım

(backpropagation) yöntemi ile modelin yaptığı hatalar (loss)

hesaplanarak bu hataların ağırlıklara nasıl yansıdığı belirlenir. Bu

bilgiyle ağırlıklar güncellenerek modelin öğrenme süreci

gerçekleştirilir. Öğrenme oranı ise, bu güncellemelerin

büyüklüğünü kontrol eder. Son olarak dropout, normalizasyon gibi

teknikler ile de aşırı öğrenme süreci stabilize edilmeye çalışılır.

ANN’ler, çok yönlü oldukları için sağlık alanında yapısal veri analizi,

electrocardiogram (EKG) sinyal sınıflandırması, hasta tahmin

sistemleri gibi birçok alanda kullanılır (Zhang vd., 2020).

2.4. İlaç Geliştirme ve Klinik Araştırmalar
Yeni ilaçların keşif süreci zaman alıcı ve maliyetlidir. YZ bu süreci hızlandırmakta, özellikle moleküler düzeydeki

etkileşimlerin modellenmesinde ve klinik araştırmaların planlanmasında kullanılarak maliyetleri düşürmektedir. 

Genetik algoritmalar (GA), biyolojik evrimden ilham alınarak çalışan optimizasyon algoritmalarıdır. Her bir birey (kromozom),

bir çözüm adayını temsil eder ve parametreleri genler olarak kodlanır. Popülasyon temelli bu algoritmalar, seçim,

çaprazlama ve mutasyon gibi mekanizmalarla en uygun çözüm adaylarını üretir (Holland, 1975). 

Algoritma, seçim (selection) ile başarılı bireyleri belirler, çaprazlama (crossover) ile genetik çeşitliliği artırır ve mutasyon ile

rastgele değişiklikler yaparak çözüm alanını daha iyi keşfeder. Performans, her bireyin sunduğu çözümün kalitesini ölçen bir

fitness function ile değerlendirilir. Bu yapı sayesinde GA’lar, çözüm uzayının çok büyük olduğu veya geleneksel yöntemlerle

çözülmesi zor olan problemler için oldukça etkilidir. Moleküler etkileşim modellemelerinde yeni bileşiklerin keşfi için

kullanılır.

Doğal Dil İşleme (natural language processing-NLP), metin ve dil verilerini analiz etmek için kullanılan bir alandır.

Tokenization aşamasında metinler kelime veya alt kelime birimlerine ayrılır. Bu işlem, modelin dilin yapısını öğrenmesine

olanak tanır. Ardından, bu kelimeler embedding teknikleriyle sayısal vektörlere dönüştürülür (Word2Vec, GloVe, BERT

embedding). Bu özellikleri ile NLP, klinik notlar, bilimsel makaleler gibi büyük miktardaki metin verisini analiz ederek önemli

bilgilerin çıkarılmasını sağlar. Bu sayede klinik araştırmamasında öncelikli hipotezlerin oluşturulmasına katkı sağlar

(Jurafsky & Martin, 2021). NLP sistemlerinde son yıllarda büyük gelişmeler yaşanmış ve özellikle transformer tabanlı

modeller, sağlık verisinin analizinde çığır açmıştır.
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Dikkat (attention) mekanizması,

özellikle doğal dil işleme modellerinde

önemli bir yapıdır ve her bir giriş

öğesinin diğer öğelerle olan ilişkisini

öğrenerek daha anlamlı bağlam

temsilleri oluşturmayı sağlar. Bu

mekanizma, modelin hangi bilgilere

ne kadar odaklanması gerektiğini

öğrenmesini mümkün kılar. Şekil 6'da,

temel attention yapısını gösteren bir

şema yer almaktadır.

Şekil 6: (sol) Scaled dot-product attention. (sağ) multi-head attention

Yukarıda yer alan Scaled Dot-Product Attention denklemi, giriş verisi üzerindeki ilişkileri hesaplamak için kullanılan temel

bir yapıdır. Bu mekanizmada, aynı girişten türetilen Query (Q), Key (K) ve Value (V) vektörleri, farklı öğrenilebilir ağırlık

matrisleri aracılığıyla elde edilir. Öncelikle Query ve Key vektörlerinin çarpımı gerçekleştirilerek benzerlik skorları hesaplanır.

Ancak bu skorların çok büyük değerlere ulaşmasını ve softmax işleminin dengesiz çalışmasını engellemek için, bu çarpım

sonuçları Key vektörlerinin boyutunun karekökü ile ölçeklenir. Ardından softmax fonksiyonu uygulanarak bu skorlar

normalize edilir; böylece toplamı 1 olan bir olasılık dağılımı elde edilir. Son adımda ise, bu ağırlıklandırılmış skorlar Value

vektörleriyle çarpılarak, dikkat (attention) çıktısı oluşturulur.

Sağ kısmında ise, Multi-Head Attention mekanizması detaylandırılmıştır. Tek bir attention mekanizması yerine, birden fazla

(örneğin 8 adet) paralel attention başlığı aynı anda çalıştırılır. Her başlık kendi ağırlıklarıyla farklı Q, K, V projeksiyonları

üzerinde scaled dot-product attention uygular. Böylece model, farklı bağlamsal ilişkileri aynı anda yakalayabilir. Her bir

başlıktan elde edilen çıktılar birleştirilir (concatenation) ve ardından bir tam bağlı (fully connected) katmana gönderilir. Bu

yaklaşım, modelin farklı bilgi alt uzaylarında dikkati öğrenebilmesini sağlayarak daha zengin temsiller üretmesine katkıda

bulunur. Aşağıda matematiksel hesaplaması verilmiştir:

Şekil 6’in sol kısmında, Scaled Dot-Product Attention mekanizması gösterilmektedir. İlk olarak giriş vektörleri üç farklı

bileşene ayrılır: Query (Q), Key (K) ve Value (V). Dikkat skorları, Query ile Key matrislerinin çarpımıyla hesaplanır. Bu çarpım

sonucu elde edilen skorlar, daha stabil gradyanlar elde etmek amacıyla (Key vektörünün boyutu) ile ölçeklenir. Ardından bu

skorlar bir softmax fonksiyonuna tabi tutulur, böylece skorlar normalize edilir ve toplamı 1 olacak şekilde dikkat ağırlıkları

elde edilir. Son olarak, bu ağırlıklar Value vektörleriyle çarpılarak dikkat çıktısı oluşturulur. Bu yapı, modelin belirli bilgilere

odaklanmasını sağlar. Aşağıda matematiksel hesaplaması verilmiştir:

Yukarıdaki Multi-Head Attention denklemi ise bu mekanizmanın daha zengin bilgi öğrenebilmesi için çoklu başlıklarla (head)

çalışmasını sağlar. Bu yapıda, her bir başlık için farklı ağırlık matrisleri kullanılarak ayrı Q, K ve V vektörleri oluşturulur. Her

başlık, kendi içerisinde scaled dot-product attention hesaplaması yapar. Tüm başlıkların çıktıları birleştirilir (concatenate) ve

ardından son bir ağırlık matrisi ile çarpılarak nihai attention çıktısı elde edilir. Bu sayede model, aynı anda veriyi farklı temsil

düzeylerinde inceleyebilir ve daha karmaşık ilişkileri yakalayabilir.
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Transformer mimarisi, NLP’de devrim yaratmıştır. 2017 yılında

Vaswani ve arkadaşları tarafından önerilmiş olup attention

mekanizmasını temel alır ve modelin girdi cümlesinin farklı

bölümlerine ne kadar dikkat etmesi gerektiğini öğrenmesini

sağlar. 

Transformer, geleneksel RNN veya long-short term memory

(LSTM) yapılarının sıralı işleme zorunluluğunu ortadan

kaldırarak paralel işlemeyi mümkün kılar. Bu mimari, aynı

anda tüm giriş dizisini işleyerek hem eğitim sürecini

hızlandırır hem de uzun bağımlılıkları daha etkili şekilde

yakalayabilir. Yani bu yapı sayesinde, model bir metindeki her

kelimenin diğerleriyle olan bağlam ilişkisini paralel biçimde

öğrenebilir. Bu, uzun bağlamları anlamada büyük bir avantaj

sağlar (Vaswani, 2017). Aşağıda, encoder-decoder yapısına

sahip temel bir Transformer mimarisi şematik olarak

gösterilmektedir:

Şekil 7. Transformer mimarisi

Şekil 7’de görüldüğü üzere Transformer mimarisi, çok

katmanlı encoder ve decoder bloklarından oluşur. Her

encoder bloğu, çoklu başlı dikkat (multi-head attention) ve

feed-forward katmanlarından oluşurken; decoder blokları

da benzer şekilde yapılandırılmıştır ancak encoder-decoder

attention katmanını da içerir. 

Pozisyonel kodlamalar (positional encodings), sıralı bilgi

kaybını önlemek için girişlere eklenir. Bu yapı sayesinde

Transformer'lar hem paralel işleme yetenekleri hem de

güçlü bağlam modelleme kapasiteleriyle günümüzde pek

çok NLP görevinde temel yapıtaşı haline gelmiştir.

Bidirectional encoder representations from transformers

(BERT) ve generative pre-trained transformers (GPT) gibi

modeller bu yapı üzerine kuruludur ve klinik metinlerin

yorumlanmasında oldukça başarılıdır. Örneğin, BERT çift

yönlü ağlamadan faydalanarak kelimelerin sağındaki ve

solundaki bağlamı birlikte dikkate alır. Bu sayede klinik

notlar gibi karmaşık metinlerdeki anlamsal ilişkiler daha

doğru analiz edilebilir.

2.5. Hasta Takibi ve Dijital Sağlık Asistanları
Giyilebilir teknolojiler ve mobil sağlık uygulamaları sayesinde hastaların nabız, tansiyon, kan şekeri gibi yaşamsal verileri

sürekli izlenebilir hale gelmiştir. Bu verilerin analizinde NLP ve diyalog sistemleri etkin biçimde kullanılmaktadır. 

Bu sistemler, hastalarla doğal dil üzerinden etkileşime girerek sorularını cevaplayabilir, sağlık durumlarını analiz edebilir ve

gerekli durumlarda alarm oluşturulabilir. NLP teknikleri ile semptomlar yorumlanabilir, geçmiş tıbbi veriler anlamlandırılabilir

ve kişiye özel tavsiyeler verilebilir. Ayrıca transformer tabanlı büyük dil modelleri ile güçlendirilmiş sağlık asistanları,

hastaların ihtiyaçlarını daha doğru biçimde anlayabilir ve gelişmiş öneriler sunabilir. 



Model/Yöntem Teknik Avantajları Sağlık Alanındaki Gücü

CNN Otomatik özellik çıkarımı, yüksek doğruluk 
Tıbbi görüntülerin analizinde yüksek
doğruluk

Pekiştirmeli
Öğrenme

Gerçek zamanlı öğrenme, belirsizlik altında
karar verme yeteneği

Cerrahi robotik sistemlerde dinamik ortam
uyumu

Lojistik Regresyon Hızlı eğitim, parametre yorumlanabilirliği
Hastalık tahmininde yorumlanabilir ve hızlı
sonuç üretimi

Destek Vektör
Makineleri (SVM)

Kernel fonksiyonları sayesinde doğrusal
olmayan sınıflandırma

Küçük örneklemli tıbbi verilerde etkili 

ANN
Çok katmanlı yapı, karmaşık örüntü öğrenme Büyük hasta verilerinde kişiselleştirilmiş

tedavi planları

Genetik
Algoritmalar

Evrimsel arama stratejisi, global optimumu
bulma

İlaç keşfinde moleküler yapıların
optimizasyonu

LLM
Metin verisinin anlamsal analizi, transformer
temelli modeller

Klinik notlardan bilgi çıkarımı, dijital sağlık
asistanları
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Yukarıdaki tabloda, her bir modelin teknik avantajlarını ve sağlık sektöründeki uygulama gücünü özetlemektedir. Modellerin

seçimi, veri tipi ve uygulama alanına bağlı olarak değişiklik gösterebilir. Ancak tüm bu sistemlerin ortak amacı, sağlık

hizmetlerini daha erişilebilir, hızlı ve doğru hale getirmektir. 

3. GELECEK PERSPEKTİFİ
Yapay zekânın sağlık alanındaki uygulamaları giderek

genişlemekte ve derinleşmektedir. Ancak bu teknolojilerin sağlık

hizmetlerine daha etkin ve güvenilir biçimde entegre edilebilmesi

için gelecekte çok yönlü araştırmalara ihtiyaç duyulmaktadır.

Öncelikli olarak, yapay zekâ sistemlerinin karar verme süreçlerinin

daha şeffaf ve anlaşılır hâle getirilmesi gerekmektedir. Özellikle

klinik uygulamalarda, modellerin yalnızca doğru sonuçlar üretmesi

değil, aynı zamanda bu sonuçları nasıl ve neden ürettiğinin de

açıkça ortaya konulması önem taşımaktadır. Açıklanabilir ve

yorumlanabilir yapay zekâ yöntemlerinin geliştirilmesi hem sağlık

profesyonellerinin hem de hastaların bu teknolojilere olan

güvenini artıracaktır.

Çizelge 1. Yapay zeka modellerinin karşılaştırması



Bunun yanında, sağlık verilerinin çeşitliliği ve temsil adaleti önemli bir diğer çalışma alanıdır. Mevcut birçok yapay zekâ

modeli sınırlı popülasyonlardan elde edilen verilerle eğitilmekte, bu da genelleme yeteneklerini sınırlayabilmektedir. Farklı

yaş grupları, etnik kökenler ve sosyoekonomik düzeylerden gelen bireyleri kapsayan daha dengeli veri kümelerinin

oluşturulması, geliştirilen sistemlerin tüm toplum kesimlerine adil şekilde hizmet sunmasını sağlayacaktır.

Veri gizliliği ve güvenliği de önümüzdeki dönemde daha fazla önem kazanacaktır. Sağlık verilerinin hassasiyeti göz önünde

bulundurulduğunda, yapay zekâ sistemlerinin mahremiyeti koruyacak yöntemlerle geliştirilmesi ve uygulanması kritik bir

gerekliliktir. Özellikle merkezi olmayan, veri paylaşımını minimize eden yaklaşımlar üzerinde durulması beklenmektedir.

Gelecekte ayrıca, çok modlu veri kaynaklarını (görüntü, sinyal, metin vb.) bir arada kullanabilen yapay zekâ modellerinin

geliştirilmesi de önemli bir odak noktası olacaktır. Klinik karar süreçleri çok farklı veri türlerinin birlikte değerlendirilmesini

gerektirdiği için, bu tür entegre sistemlerin sağlık hizmetlerinde doğruluk ve etkinliği artıracağı öngörülmektedir.

Son olarak, yapay zekâ teknolojilerinin sadece teknik açıdan geliştirilmesi yeterli olmayacaktır; bu sistemlerin sağlık

profesyonellerinin eğitim süreçlerine de entegre edilmesi gerekmektedir. Hekimlerin yapay zekâ destekli araçları doğru bir

şekilde yorumlayıp kullanabilmeleri için gerekli bilgi ve becerilerle donatılması, bu teknolojilerin klinik pratikte başarılı bir

şekilde uygulanmasının ön koşuludur.

Özetle, yapay zekânın sağlık alanındaki geleceği büyük fırsatlar barındırmakla birlikte, bu fırsatların sorumlu, adil ve güvenli

bir şekilde hayata geçirilmesi için disiplinler arası iş birliklerine ve bütüncül yaklaşımlara ihtiyaç duyulmaktadır.

4. GİZLİLİK VE ETİK 
Yapay zekânın sağlık hizmetlerine entegrasyonu, önemli etik ve gizlilik kaygılarını da beraberinde getirmiştir. Sağlık verileri,

kişisel mahremiyet açısından en hassas veri türlerinden biri olup, bu bilgilerin işlenmesi ve paylaşımı sürecinde yüksek

düzeyde özen ve sorumluluk gerekmektedir (Goodman, 2020). YZ sistemlerinin veri güvenliğini sağlamak amacıyla gelişmiş

şifreleme yöntemleri ve anonimleştirme teknikleri kullanması zorunludur. Ancak anonimleştirilen verilerin bile ileri analiz

teknikleriyle yeniden tanımlanabileceği gösterilmiştir; bu durum, veri koruma stratejilerinin sürekli olarak güncellenmesini

ve sıkı yasal düzenlemelerle desteklenmesini gerekli kılmaktadır (Shokri & Shmatikov, 2015).
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Bununla birlikte, YZ sistemlerinde karar verme süreçlerinin şeffaf

olmaması, sağlık alanında ciddi etik sorunlar doğurmaktadır. "Kara kutu"

olarak tanımlanan bu yapılar, hem hekimlerin hem de hastaların

sistemlere olan güvenini zedeleyebilmekte, alınan kararların

gerekçelendirilmesini güçleştirmektedir (Lipton, 2016). 

Sağlık hizmetlerinde güvenin temel bir unsur olduğu düşünüldüğünde,

yapay zekâ modellerinin açıklanabilirliğini artırmaya yönelik çalışmaların

önemi daha da artmaktadır. Ayrıca, YZ sistemlerinde algoritmik

önyargıların varlığı da etik bir tehdit oluşturmaktadır. Özellikle eğitim

verilerinde yer alan ırksal, cinsiyete dayalı veya sosyoekonomik

eşitsizlikler, modellerin belirli gruplara karşı sistematik hatalı kararlar

üretmesine yol açabilir (Buolamwini & Gebru, 2018). 

Stanford Üniversitesi'nde yapılan bir çalışmada, tıbbi sohbet robotlarının azınlık gruplara yönelik ayrımcı söylemler

üretebildiği gösterilmiştir; bu durum, veri setlerinin çeşitliliğinin artırılması ve model geliştirme sürecinde etik gözetimin

sağlanmasının zorunluluğunu vurgulamaktadır (Williams vd., 2023).

Hasta mahremiyeti konusu da sağlıkta yapay zekâ uygulamalarının merkezinde yer almaktadır. Kişisel sağlık bilgilerinin

toplanması, işlenmesi ve saklanması süreçlerinde bilgilendirilmiş onam ilkesine sıkı sıkıya bağlı kalınması gerekmektedir

(Goodman, 2020). Hastaların verilerinin nasıl kullanılacağı ve kimlerle paylaşılacağı konusunda açık ve anlaşılır bilgilendirme

yapılması, hem etik bir yükümlülük hem de yasal bir gerekliliktir.
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5. SONUÇLAR
Yapay zekâ, sağlık sektöründe yalnızca teknolojik bir gelişme değil, aynı zamanda sağlık hizmetlerinin sunum şeklini köklü

biçimde dönüştüren bir paradigma değişimidir. Tanı koyma süreçlerinden tedavi planlamasına, hasta takibinden kaynak

yönetimine kadar birçok alanda etkili olan bu teknolojiler, sağlık sistemlerinin verimliliğini ve kalitesini artırmakta büyük rol

oynamaktadır. Özellikle yapay zekâ destekli görüntü işleme sistemleri, radyoloji gibi alanlarda doktorlara daha hassas ve

hızlı kararlar alma imkânı tanırken, doğal dil işleme uygulamaları hasta kayıtlarının analizinde büyük kolaylık sağlamaktadır.

Bununla birlikte, biyosinyal analizi ve uzaktan hasta izleme sistemleri sayesinde hastalıkların erken teşhisi mümkün hale

gelmiş, kronik hastalıkların takibi kolaylaşmıştır.

Yapay zekânın sunduğu bu olanaklar, sadece hekimlerin karar verme süreçlerini iyileştirmekle kalmamakta; aynı zamanda

hastaların sağlık hizmetlerine erişimini artırarak bireyselleştirilmiş sağlık çözümleri sunmaktadır. Kişiye özel tedavi

planlarının geliştirilmesi, hasta memnuniyetini ve tedavi başarısını önemli ölçüde yükseltmektedir. Bu gelişmeler, özellikle

sağlık hizmetlerine erişimin sınırlı olduğu bölgelerde büyük önem taşımaktadır.

Ancak yapay zekânın sağlık alanında yaygınlaşması beraberinde bazı zorlukları da getirmektedir. Mahremiyetin korunması,

veri güvenliği, algoritmik önyargılar ve şeffaflık gibi konular, bu teknolojilerin etik ve güvenli kullanımı açısından titizlikle ele

alınmalıdır. Ayrıca, sağlık profesyonellerinin bu teknolojilere uyum sağlaması, gerekli eğitimleri alması ve yapay zekâ

sistemlerini etkin bir şekilde kullanabilmesi için kapsamlı altyapı yatırımları ve politikalar gereklidir.

Tüm bu unsurlar göz önünde bulundurulduğunda, yapay zekâ destekli sağlık sistemleri gelecekte çok daha kapsamlı, etkili

ve insana odaklı bir sağlık hizmeti sunma potansiyeline sahiptir. Teknolojinin insan sağlığıyla buluştuğu bu noktada, hem

hasta hem sağlık çalışanı açısından daha erişilebilir, güvenli ve sürdürülebilir bir sağlık sistemi inşa etmek mümkün hale

gelmektedir.

Tüm bu etik ve gizlilik sorunlarının etkin bir şekilde yönetilebilmesi için disiplinler arası iş birliklerine ihtiyaç vardır. Sağlık

bilişimi, hukuk, etik ve yapay zekâ mühendisliği gibi alanların uzmanları birlikte çalışarak, şeffaflık, adalet, hesap verebilirlik

ve güvenlik ilkelerine dayalı düzenleyici çerçeveler geliştirmelidir (Topol, 2019). Ayrıca, uluslararası standartlar

doğrultusunda etik denetim mekanizmalarının oluşturulması, YZ sistemlerinin insan haklarına saygılı bir biçimde sağlık

alanına entegre edilmesini kolaylaştıracaktır.

Sonuç olarak, yapay zekânın sağlık alanındaki potansiyelinden tam anlamıyla yararlanılabilmesi için, güvenlik tehditleri ve

etik risklerin ciddiyetle ele alınması ve bu alanlarda sürekli iyileştirme çabalarının sürdürülmesi elzemdir. Etik ilkelere bağlı,

şeffaf ve adil yapay zekâ uygulamaları hem bireysel hasta güvenliğini hem de toplum sağlığını koruyarak sağlık

hizmetlerinde sürdürülebilir bir dönüşümün önünü açacaktır.
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